Rotulação Automática de Grupos com Aprendizagem de Máquina Supervisionada

Aluno:Lucas Araújo Lopes
Dissertação de Mestrado

Resumo: O problema de agrupamento (clustering) tem sido considerado como um dos problemas mais relevantes dentre aqueles existentes na área de pesquisa de aprendizagem não-supervisionada (subárea de Aprendizagem de Máquina). Embora o desenvolvimento e aprimoramento de algoritmos que solucionam esse problema tenha sido o principal foco de muitos pesquisadores o objetivo inicial se manteve obscuro: a compreensão dos grupos formados. Tão importante quanto a identificação dos grupos (clusters) é sua compreensão e definição. Uma boa definição de um cluster representa um entendimento significativo e pode ajudar o especialista ao estudar ou interpretar dados. Frente ao problema de compreender clusters – isto é, de encontrar uma definição ou em outras palavras, um rótulo – este trabalho apresenta uma definição para esse problema, denominado problema de rotulação, além de uma solução baseada em técnicas com aprendizagem supervisionada, não-supervisionada e um modelo de discretização. Dessa forma, o problema é tratado desde sua concepção: o agrupamento de dados. Para isso, um método com aprendizagem não-supervisionada é aplicado ao problema de clustering e então um algoritmo com aprendizagem supervisionada irá detectar quais atributos são relevantes para definir um dado cluster. Adicionalmente, algumas estratégias são utilizadas para formar uma metodologia que apresenta em sua totalidade um rótulo (baseado em atributos e valores) para cada grupo fornecido. Finalmente, essa metodologia é aplicada em quatro bases de dados distintas apresentando bons resultados com uma média acima de 93.5% dos elementos rotulados corretamente.

Download do trabalho.

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *